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8. ASYMPTOTIC BEHAVIOR

In this section, we shall study the asymptotic behavior of the identi-
fication equations. The results will allow us to consider the problem of
controlling the system § over an iﬁfinite time interval (N -+ «).

The main cheoretical results will be stated; the proofs-are given in
Appendix C.

Definition 8.1: {(AK), g(k))}:=0 is said to be completely observable

of index v at k if the observation matrix

L‘_A’c(k,v) =[C) : g (kIS KR+D) D .. Dok + v - 2,K)C "k +v - 1]
: (8.1
RS, )

is of full rank n. ((A(k),g(k))}k=o is said to be uniformly completely

observable of index v 1f the pair is completely observable of index v for

all k=0, 1, ... .
?heqrgm 8.2: Let {(é(k)tg(k))}:=o be uniformly completely observable of
index v, and suppose that A(k), G(k) are nonsingular, k = 0, 1, ... . If

u(k) # 0, k=0, 1, ..., then {(A(k,u(k)),E0) Y _, is uniformly completely

observable of index v', v' 2 2v.

Lorollary 8.3: Let A(k), G(k) be bounded and nonsingular. If
{(é(k)agﬁk))}:=o is uniformly completely observable of index v, the error
covariance matrix, gﬂklk,u(o,k—l)) which satisfies (4.21) to (4.23), will

remain bounded for all k = 0, 1, ... where u(k) is any bounded but nonzero

control for all k=0, 1, ... .



Lemma B8.4: Suppose that G(k) satisfies

SWBG'()SB ; BeM , B2O .

n (8.2)

Let y(k) 0, i.e., there is nc driving noise in the gain dynamics, then f(.zr L

any control sequence, we have

I, 6er1]k41,0(0,k)) £ I, (kk,U(0,k)) . (8.3)

holds when G(k) = I for

We remark that Eq. _(8.2)

all" k, i.e., the unknown parameter vector b is comstant,

An immediate comsequence of lemma 8.4 is that if (8.2) is true and

(k) = 0, then there exists I, such that

(8.4)

Itm I (k|k, U0,k - 1)) = L
B B =p

Note that (8.4) . fs true independent of .the observability of {(A(k) ,g(k))};;o.

In the following thearem, we shall give sufficient conditions under which

520 7.

Theorem 8.5. (Main result):Let l(k) =0, .A(k), _G_(k) be bounded and nonsingular and
< s

G(k) satisfies (8.2) ), k=0,1, ... . 1f {(A(k) ,_Q(k))}k=0 is uniformly

completely observabie of index v and u(k) is any dounded but nonzero control

for k =0, 1, ..., then -

Iin I, (k[k,U(0,k - =0 . (8.5)
koo

Theorem 8.5 can be extended to the case where u(k) is bounded but

ponzers cemtrol for all but a finite number of k's. Since L(k|k,U(0,k-1)) 2 0,

(8.5) also implies

1im

ke

p (elk, U0, k-1)) > 0 (8.6)

I
Ly
if the conditions for theorem 8.5 hold.

Let us consider an observable system &, (2.1), the galn parameters

are assumed tw be unknown and satisfy
bk + 1) = G(k)b(k) (8.7

with G(k) sa;tist':ying (8.2). Assume that we want to control the system §

over an interval N < . In the beginning, the modified weighting on the

control fs high, and thus in general, the control magnitude will be low at

the beginning. Thus, the trajectory of the overall control system would
be pretty much the same as the input-free trajectory of the system 8. If

the matrix A(k) is exponentially stable, the true state of the system will

evolve toward zeru by using negligibly small control magnitudes (even zero).
i N-1

The result is that little effort of the input, {u(k) }k=0

is spent for control

.;und identification purposes. We would expect that the est{mated parameters

will hardly converge to the true parameters, b(k). On the other hand if -

A(k) is pot expomentially stable, then the true state of the overall system

will diverge. This diverging phenomenon will be noticed by the identifier,

thus resulting #m = high control magnitude because of (5.1). Since

little is fnitially known about the gain parameters, the high magnitude con-

trol will be urilfzed meinly for identification purposes. Therefore the



control will be kept bounded awa); from zero as long as exact identification

of b{k) has not beem obtained. Using theorem 8.5, we predict:that for

unstable systems the estimated parameters of b(k) will converge to the true

gain parameters pefore the control magnitude goes to zero. This is also

bornc out by the simelation results.

Analytical studies of the convergence rate of the 0.L.F.O. system are

not S'et available. FErom the above discussion, we may predict roughly that

- the convergence-rate for unstable system will be relatively fast and the

convergence-rate for stable system will be very slow.

Finally, we shall discuss some interesting implications of theorem

8.5. . Comsider am observable system &, (2.1), , with unknown gain

parameters satisfying (8.7) ) and wit:h G(k) satisfies (8.6).1). Let

ik(_(k]k b(k]k) ,__b(klk u(o, k—l)) be any ad-hoc control law which is

"placed" after the identifier and with the following propertles (k > 0);

n 800 sRxRT XM >R
2)  $, (x.2,D) # 0, x e B, bsx“,zem L T
3) 9_.,(:: k,0) = -(h(k)+b (k)K(k+l‘b(k)) b RKREFDAKIE 3
zE . be B
From condition 2, we see that Eb(k]k,U(O,k-_l)) +0as k> and
so from conditionm 3, the ad-hoc control scheme will converge to the optima_l

control strategy when the full dynamics become known. This indicates that

the ad-hoc scheme ik(_g_(klk) ,b(klk) %, (k|k,0(0,k-1)) can ptov1de reasonable N

fesults.

9. REMARKS

Vector Control
In our investigation, we assumed that the control is scalar., However,
the approach can be extended in a straightforward conceptual manner to the

vector contro! case. First, a set of identification equations is derived

which will generate the estimate of the cuxrent state, the current estimate

of the unknown gain matrix and the different cross-error-covariance matrices.

An open-loop control problem is formulated as in Section 4, equations (4.20)

to (4.31) and discrete matrix minimum principle is used to obtain the extremal
solution. The results will be similar to those of scalar control case. How~
ever, the equations in the vector control case will look and be more complicated.

Control Over Infinite Interval

let us consider the problem of controlling the system S, which is time
invariant and with an unknown constant gain vector b, over an infinite interval,
i.e., N+ ». To obtain a feasible solution we suggest the window-shifting
approach. Assume that at all times, we have N more steps to control, thus at
all times we solve an open-loop control problem over an interval of N steps.
This approach is motivated by computational considerations and the theoretical
results derived in Section 8.

We note that in the 0.L.F.O0. approach, we have to re-solve the open-loop
control problem at every time k so as to adjust the control scheme accordingly
In our case, we have to compute _fg(k|k) in a backward direction starting from

the terminal time N to k for each k. If N is very large, this requires a



large computation time. From a computational standpoint, we would like
to "eut back" the terminal time. Conceptually, in trying to control By theorem 8.5, the estimate in
- &
over an infinite time period, the controller looks into all future effects b will converge asymptotically, and so when E(klk’U 0,k - 1) > b, we have

caused by present action, and decides on the optimum move for the next
K(k,N+KE) 0

step. The window-shifting approach suggests that instead of looking at all R(k|k) ~
future.effects, the controller looks at only near future effects caused by [N 0 : o]

present actions and decides on suboptimal moves. One may view such an
where RK(k,N + k;F) satisfies
approach as a "short: term adaptive scheme." Note also that we can adjust the
our

“window width” according toscomputational capability. At all times, we need E(k,N4esF) = A" (R(k+L,N4k5F) - RO+, N+k;E)b(h + b'K(k+l »N"'k;z)h)-l'
only te solve for g(k[k) in a backward direction starting from N + k to k.
- EME(K+L,N4GE)A + W 3 KN4k NHKGF) = F 9.4)
Thus,from a conceptnal and a computational point of view, such an approach d :
an
may be desirable. * . - .0
w &) > 4@k k) = ~(h + B'RKGMHGDD) ThIRK,MHGDA K[ (9.5)

Assume that the time invariant system 8 being controlled is observable
and controllshle. If b is known exactly, then if we consider control over an (See discussion in Section 6.) Comparing (9.2) and (9.4), we note that
infinite time period, fhe optimal feedback gain is constant and is given by

4=-th+bED KA ©.1) RGGMGE) =Ry =K . ©.6).

where K is given by the steady state solution of Thus asymptotically, the time varying adaptive system tends to be a time

invariant control system.

= AV _ e 1Lt P 4= 9.2
B AR -Kbh+b'EH)DERIA+Y 3 K =E 0.2

Let N be the integer such that for n 2 N,
ll_lgn—Tlgn_lllse : >0 . 9.3)

Such ag fateger N can be found experimentally off-line. Adjust the window

width equal ta N, and apply the window-shifting approach.



10,  NUMERICAL EXAMPLES

In the previous sections, we have studied theoretically the adaptive
control of a discrete time linear system with an unknown gain vector.  An
adaptive system was derived using the 0.L.F.0. approach, and the asymptotic
behavior of the control system was discuséed. There are still some important
q;estions which have not been tréated‘theoretically. For example, rates of
convergence are, in genmeral, of great interest, but this topic was not
treated in detail. In this section we present simulation studies carried
out for some specific third ordér systems. The main purpose for these
studies is to provide quantitative results about rates of convergence and
to tést the validity of the qualitative conclusions of Section 6.

To enhance physical intuition, the discrete time systems were thained
by sampling a continuous-time system. In this case, the uncertainty of the
b(k) vector is equivalent to uncertainty as

(a) To the number of zeros,

(b) The location of the zeroes in the S-plane, and

(¢) The plant DC gain.

It is assumed that the pole locations are known.

Let us consider a stochastic continuous time-invariant linear system

described by:

X8 = Ax (£) +bou(e) ¥ 45 () 5 x(0) v GO L)

(10.1)
Ye(t) = &'z (£) + ng(t) b v 60, I)

vhere Ef(t) is a scalar driving white Gaussian noise, - nf(t) is the

scalar abservation white Gaussian noise. The statistical laws of §f(t)
v

and qut) are assumed to be known:

t, t,
Ic g0t~ o, | Lt dt) (10.2)
1 1
& : ty
[ meorac~glo, [ aay (10.3)
T t)
From (10.1), we have
At t A(t - 1) t A(t-T1)
xf(t) =gt 25.;_(0) + fo et Ef“f.(") dr + IO rf gfif(‘r)dr (10.4)

Assume that we take observations only at discrete instants of time ¢t = A,

24, 34 ...; A is assumed to be small such that u(t) = u(ka), g(t) = £(ka),

t e [k, (k+1)A]1:

A Al A_(kA) kd A (kA - 1)
7 LA = a_f e—f g_c_f(o) + fo _e:—f 1:{ uf(-r)d't
kA A.(kd - 1) -
+fa et 4 Ef(r)dr]
A Ao A Ao
+[getdo - b, ug (kb + [oe & do -4 € (x8) (10.5)
Defining
A8 A Ao
28z 0 5 a2t 5 b8 e dony
. (10.6)
X Ao A
a8 [leT a0 g s B TG 5wl fugt),
(10.5) becomes
=0cH) =4 x(k) +b l.x(k) +de (k) ; x(0) ~ G(O, ) 10.7)

10



Defining
A A
vy} = yp0a) 5 nlk) = ng(ka)
the chservatiom sequence is
v} = ¢ xk) + nik)
The statistfcal Yaws of £(k), n(k) are

£(k) ~ GO, ra)

k) ~ GO, q4)

The gain vector is assumed to be unknown but constant, therefore the

equation for the unknowvn gdin is
BOc) = b 5 BO) v Glbys &)

We can now apply the results of previous sections to equations (10.6),
(10.9), (10.11), and (10.12).
A computer program was designed which operates as follows:

(1) Read in by ¢, d,., 1, q, X Eo’ the sampling interval

Ap b & 4
L, the final time N and the different weightings W, h, F,
and covariances zxo’ Ebo'

(2) A subroutine, which was developed by Llevis

(i1

, was used to
convert the continuous version, (10.1), to the discrete time
sample data version (10.6). The covariances of &(k), n(k)

are computed using (10.11), (10.12).

11

(10.10)

(10.11)

(10.1:2

€3} The true w,;alue of  x(k) was recorded. Using a moise generating
subroutine, a sample value of y(k) was o'btained.' Assume that
2(0-1/k-1), B(k-1/k-1) are recorded. A subroutine for the
ident¥fication equations (4.19)-(4.23) was used to obtain the
errent astimates 2(k/k), B(k/%), and tke error covariance
matrix E(k/k) recursively. These values were also recorded,

(4) & subrautine based on (5.1) - (5.10) was used to obtain the
adaptive control u*(k).

(5) The control u*(k) waé. applied to the system (0.6), using a

noise generating device to obtain a sample value of £(k); then

by (10.6), we obtained the value x(k+l).

(6} We advance k -+ k+l and repeat (3) through (5) until we get to

the final time k = N-1,

The prugram was written in such a way that if we set _ﬁ_(k/k) = b, and
-Ebo = 0, then the procedures (3) through (6) will give us the truly optimal
stochastic control when b is known. Using a plot-tiAr;g sﬁbroutine we can
plot out the truly optimal trajectories vs. the 0.L.F.0, trajectories; the
true b vs. the estimated ,}\1, and optimal feedback gain vs. adaptive gain
(it was moted that the adaptive/\c:?;rtrr:é-tion term will converge to zero quite
fast), under the reql‘zirement that the same. noise samples (£(k), n(k)) were
used for Bath the'known b" and “unknown b" cases. These plots provide us

with qualftative understanding on the rate of convergence of the overall

suboptimal 0.L.F.0. control system, and the effects of unknown gains.

12



- in all the computer simulations, unless otherwise mentioned, we set

the values:

. 1 1
& = 0.2 gecc,, T = 0.05, g = 0.45, g_f = [2} > Xy = [1] 5
1 1 (10.13)
-f_rz_I_z' 'E-"'I“Zi’ -111:.7= oo™ 4 i3 e=no 0l
It is important to realize then that we deal with a third order \ 4w
system. The only measurement is that of the output, every 0.2 seconds. % 2

This sampled-data measurement is corrupted by white noise whose E 11
variance is $= (0.45)(0.2) = 0,09 (or 2.M.S. value 0.3). The _@'@ :r i — O
plant may have none, one, or two zeroes, We do not know how many -3 -2 -% + -1
there are or where., Hence, even though the poles are assumed known, *“""2
the measurements are extremely meager since from the noisy measure- POLE ZERO PATTERN FOR EXAMPLE 1: -!—INSTABLE SYSTENS
ment of one variable, one must estimate six (three state variables
and three parameters that define the number and locatioﬁ of zeros).
Furthermore, the open loop plant may be unstable.
Exarple 1: TUnstable System $ iw

. It is assumed that the conmtinuous time system is described by

%12

(3 ] k) P s
§{==g~g—1‘7 I PR _§ 3 h=1 3 _:gf(o)=[-z] (10.14) . E"i

DSt

0
t . R WP -
such a system has aAglpgnsfe: function (see Fig. 2) 3 -2 % "-11 2
D
o '}

(s + 3)(s + 2)

H (s} = - Dl t (10.15) :
+ POLE ZERO PATTERN FOR EXAMPLE 2: STABLE SYSTEM
Note that it has an unstable pole at s = 1. Initially, we set
X G FIGURE 2
_\_3{(0/0) = _O (10.16)

. 14
‘13



i.e. we start with an initial guess that the system hasno zeroes. The
final time is N = 40 (or 8 seconds).

Many computer runs have been made on the same system with different
noise samples. The plots for one particular sample experiment, which
represents a fairly average behavior, are shown in Figs. 3, 4, and 5.
From the simulation data (which is not shown completely), we can obtain
a rough idea about the behavior of the suboptimal 0.L.F.0. control system.

From the simulations, it was found that in the beginning, the 0.L.F.O.

adaptive gain is approximately zero (Fig. 5) and the 0.L.F.0. trajectory

follows closely to the input-free trajectory (Fig. 3).

This agrees with the discussion in Section 6 regarding the effect of
having an unstable system dufing the initial measurements (h very large)
in which little control is applied. The diverging phenomenon, due to the

plant instability, is detected by the identifier; controls of considerably

high magnitude are then applied for a few steps. This is indicated by the

fact that there are sharp jumps in the state trajectories. The simulation

showed that these jumps are not caused by bad noise samples, because the

- P e st . : e .
same phenomenon appears in different sample runs at approximately the same

time interval, The high magnitude control ‘serves mainly for identification

purposes; this is revealed by the fact that at the next time unit, the
estimate of b clossly agrees with the true b (Fig. 4). As was pre-

dicted in Section 7, the O.L.F.0. adaptive gains do converge to the truly

optimum gains (Fig. 4). The correction term vs. time is not shown in the
figure, but simulation results indicate that the correction term goes to

zero very rapidly after the identification of b is essentially complete.

15

Fig. 3
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Another set of simulation experiments was carried out where we kept

the same sample noise but varied the weighting h, (h > 0). It was found
from the experiments (not reported in here) that the maximum magnitude of

the overshoot in the 0.L.F.0. trajectories varied inversely with the value

nf h; if b was large, we have relatively "lower" overshoots; whereas, if

h was small, we had relatively high overshoots. Also, the experiments seem

to indicate that the convergence rate and the final estimation error in b

seen to depend on the value of h we chose; with large h, we have relative~

1y slow convergence rate and relatively big final estimation error in b;

if b is small, we have a relatively fast convergence rate and relatively
small final estimation error inm b.

In the next set of experiments, we kept the weighting fixed (h = 0.1),
and repeated the first set of experiments with larger driving noise co-
varfance (r = (L.45) while using the same observation noise sample. The
experimental results (not reported in here) seem to indicate that the in-

crease in driving noise covariance has little effect on the convergence

rate of the 0.L.F.0. control system.

It is of interest to find out whether the initial guess on bf will

be sensitive tao the resulting 0.L.F.0. control system. We carried out a

set of experiments where we fixed

g c 1 ©
b=1]0 H A= |0 g 1 (10.17)

Thus the true transfer function is

-1
B:(s) = 10.18
1 (s—l)(sz+25'+ s) ¢ )
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The initial condition on 5{(0) was kept fixed, and using the same sample

noise, we varied our initial guess in kf The same runs seem to indicate

that though the sample 0.L.F.0. trajectory varied with different initial

guesses in_b_; the convergence rate was quite insensitive to the guess in

et

Example 2: Stable System

It is assumed that

R &
A= o o 1| 5= |25 x@= |3 (10.19
ks 7 - -t 7 - 2

The true transfer function for the system is (Fig.2).

(s + 3)(s + 2)

By(s) = (10.20
2 (s+1)(52+25+s) ;
3
The system is stable.
In the first set of experiments, we initially guess
" 2
bet0/0) = 1 4 (0.21)

i.2, that the zsroec are located at —%+V% and -% - :22 . The

weighting cn the control is h = 1. We take the final time N = 40.
Sample runs for the same system with same initial guess (10.21)
were made and the plots for one particular sample are shown in Figs.

6, 7, 7. As opposed to the unstable case, the 0.L.F.0. adaptive gain

is some nonzero vector, and so the value of the 0.L.F.0, control is not

zero at_the beginning (Fig. 8). This confirms the remarks made in

Section 7. The control is used both for identification and
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control purposes. The system is stable, and since no large magnitude
control is applied, the 0.L.F.0. trajectory decays down to zero (see

Fig, 6). This decaying phenomenon is noticed by the identifier, and

thus the control is kep‘ t near zero to save energy. Therefore, after a
certain time interval, when the 0.L,F.0. trajectory goes near the origin,
the 0.L.F.0. control will remain zaro for most of the time. The system

behaves almost like an input~free system. In fact, this is also what the

" truly optimum system will do. . We note from Fig. 7 that the identification

process of the unknown gain b stops at about k = 20, which is the
approximate time unit when the 0.1..1-‘._0_. state trajectory begins to stay
around zero. If we consider control over an infinite interval (say using a
window-shifting approach) we may expect awfully_ slow convergence rate in the
estimation of b to the true b, and a slow convergence rate of 0.L.F.O.
control system to truly optimum control system.

;[n the second set of experiments, we used the same noise samples as

before but starting with the initial condition

Z
_:gf(o) = &] (10.22)

- 0
]>_f(0/0) = [ﬂ (10.23)

i.e. the plant had no zeroes. The weighting on the control is h=1, and

The initial guess on Ef was

we take the final time N = 60. The plots for one typical sample experi-
ment are shown in Figs. 9, 10, 11. (The sample noise for the sample run

shown in Figs. 9, 10, 11 is the same as that shown in Figs. 6,7,8. Comparing
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this set of experiments with the last, we note that more or less the same

phenomenon occurred in both sets of experiments. The final estimate in b

A A~
is way-off its true value, in fact bl(k/k) and bz(k/k) are opposite in

et e

-

[}
{4nec)

Fig. 11 (Continued)

sign with those of bl and b2 respectively; but interestingly enough

the adaptive gains are adjusted accordingly so that the values of the

0.L.F.0. control sequence and the truly optimal comntrol sequence are almost

the same. This set of experiments indicates yet slower convergence (if

there is any).

Note that in both sets of experiments even if the estimate of b does

not converge to the true b, the truly optimal trajectory and 0.L.F.O.

trajectory are almost the same after the transient period.

Intuitively, the results are reasonable. Since we have not told the
problem to identify b, it will not do so unless the identification is
absolutely necessary as to conserve control energy. The experimental results
verified our theoretical deduction of Section 7.

The experiments seem to indicate that for stable system, the choice of

initial guess will not greatly influence the 0.L.F.0. trajectory, but will

affect the convergence rate for the estimate in the gain parameters, b.

Remark: In each set of experiments discussed above, the number of
sample runs is not enough to enable us to draw specific statistical con-
clusions; yet the regularity in the sample runs enable us to draw some crude

conclusions.

From the simulations, we may draw the following conclusions which agree
with the theoretical predictions regarding the 0.L.F.0. control systim.
{1} The rate of convergence seems to be very dependent on the
stability of the system. For unstable systems, the convergence

rate seems to be faster compared to that for stable systems.

46



)

o)

(C))

()

(6)

It seems that large controls will help identification of the
unknown gain parameters, and so convergence rate seems to relate
directly to the.magnitude of the control action.

For unstable systems, the rate of convergence seems to be

fairly independent of the initial guess ou the unknown gain,

whereas for stable systems, the conéergence rate may be quite
dependent on the initial guess on the unknown gain.

For unstable systems, the 0.L.F.0. trajectory will depend on the
the initial guess in Ef, but then for stable systems, ;he 0.L.F.0.
trajectory will not vary drastically when we vary the initial
guess In hf'
For the unstable system, the 0.L.F.0. trajectory seems to follow
closely its input-free trajectory in the beginning, until the
diverging phenomenon tells the identifier to send back large
controls for identification purposes. This causes some overshoots
in the trajectory. The magnitude of the maximum overshoot seems
to relate inversely with the values'}br the weighting constant h
on control, For stable systems, simultaneous identification and
control seem to be carried out in the beginning. Since the system
is stable, with 1it:le control energy, the state wili go to zero,
8o after some time period,when the state is near the origin; ’
approximately zero control is applied thus terminating the
identification of b,

Lastly, we sould like to comment on the computational

feasibility of the proposed scheme. The above experiments were

47

simulated using an IBM 360764/40 system. It was found that the actual
computation of the 0.L.¥.0. control sequence can be carried out almost
in real time for N = 40; i.e. in about 0.2 second, the following tasks
were accomplished: One step computation of (4.19) - (4.23) (6 vector
difference equation and 6 x 6 matrix difference equation), the parameter
computations (5.3) - (5.6), and the computation of g(klk) (5.2), s(k)
(5.8) (one 12 x 12 matrix difference equation and one 3 x 3 matrix
difference equation, computed in a time-backward direction directly

for k < 40 steps, k = 0,1,...,N-1).



11. CONCLUSIONS

A technique for adaptive control for a class of linear systems with

unknown gain parameters has been presented. .Simulation results have verified

qualitative theoretical predictions.
The technique proposed ic more general than that proposed by Farison 2t

[3?
al since they enforced separation so that the control gains are not adjusted

by the uncertainty (covariance matrices) of the parameter estimates. It

differs from that proposed by Murphy [4], Gorman and Zaborszkyls] Bar-
£

. [6} 7
Shalom and Sivan , and Florentin[ ] in the sense that these stated or

developed techniques to approximate Bellman's equation. The paper by RBar-
6]

[ .
Shalom and Sivan did propose an 0.L.F.0. approach to the problem but no

detailed derivations were carried out; thus, one could not deduce qualitative

properties of the adaptive system.
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APPENDIX C

PROOFS ON ASYMPTOTIC BEHAVIOR

Proof of Theorem 8.2

By (4.17) and (4.20), we have

FC(k)

C(kHD)g, (K, k)
(k,2v) =
C(kt3)g, (ki1 k)

_g_(k+2v-.1)1A(k+2v—2 k)

.
.
.

By assumption, the first mv rows of

vectors. Among the rows vectors C(k + v + j)Q_A(k + v+ j - 1,k), let

s;j(l)(k + v+ j)gA(k + v+ j-I,k), ...

3

Ck + v)_q;;A(k +v=-1,k), Clk +v - l)iiA(k + v,k), ... Ck+Vv+]3- i)

°

C(k+1l)u(k)

2=k ;
k+2v-2°

=k

kti+l G
. f: CUet1)g, (kHj-1,2+1)ull)g (2-1,k)

> _g(k+2v-1)_QA.(k+2v-2,£+l)u(z)9G(l-l,k)_‘

(c.1)

vectors contains at least n independent

v
c
-®
be the v, vectors which are independent of the row vectors:

309

iA(k+ v+ j-2,k), =1, ..., v - 1; where

Ck+v+3)=

c (k +

_c_i(k + v+ j)]A

ool

(k+v+j)iA(k+v+j - 1,k),

(c.2)

and pj(-) ig some permutation of {1‘, 2, «es, m}. Since {(A(K) ,g(k))}:=0

is uniformly completely observable of index v, it follows that vy #0,

i=1, ..., v -1, and that

m+u1+v2+

sse V

v-1

51

=1

(c.3)

Assume that we have the dependence

vii-1 , .
_g‘;j(s)(k+v+j)_QA(k+v+j-l,k) = Z _g;(j,s)_q(kn&i)gA(kﬂ—l,k); 15ss vy (C.4)
i=0 .

where the only possible nonzero entries of gi(j,s), i=0, 0.y v+ -1, are
those corresponding to independeat rous of C(k + i)QA(k +1-1,k), 1 =0,
eesy v+ 3~ 1. If there exists no g_}_(j,s), 1 =0, ooy v+ 3 -1, which
bears the relation (C.4), then the (m(v + 3§ =~ 1) + p(s))th row vector ofv
_!gi,é(k,Zv) is independent of the first m(v + j ~ 1) row vectors. If there
exists g_i(j,s), i=0, ..., v+ j - 1 which gives the dependence (C.4),

then such a dependence is unique by construction. Now assume that the

(m(v + j - 1) + p(s))th row vector of Mi,é(k,Z\)) is dependent on the first
m(v + j - 1) row vectors, then we must also have the dependence

ktvti-1
& (s)(k+v+j)__¢_A(k+v+j-1,2+1)u(z)i,c'(g_l’k) -
gk J _
vij-1° kts-1 )
Egi(j,s)z E(k+i)9_A(k+i—1,z+1)u(z)_%(z..1,k) . ©.s)
i=1 =k
Since A(k) is nonsingular, by (C.4) we have
-1 kbuii-l .

Z' g:'l(j,s)_C'(k+i)ﬂA(k-i-i—1,JH-l)u(l)gG(l-l,k) =0, (c.6)
i=0 L=kl
where
;QA(i,j) =A‘1(i)§1(i +1) ... 5_'1(3) s i>3 . «.n

Since {(A(k) ,_C_(k))}:=0 is uniformly completely observable, the vector
zjf(j,s> A la)(38) -oe sgj'(j',s)] (c.8)

cannot be the zero rowﬂvector, S =1, seuy vj. By assumption G(k) is
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nonsingular, therefore (C.6) is true if and only if u(k + i) =0, 1 =0,

1, +..; j which is a contradiction. 'This re;ult applies for s = 1, s vj;
§=0,1, ..., v=1. Together with (C.3) and the remark made at the
begingins of the proof, we have that ﬁﬁ’é(k,Zv) will have rank 2n if

ulk + 1) #0, i =2, 1. ..., v~ 1. The thearem follows from the assumption

that uw(k) # 0, ¥ = 3, 1, «cu «

Proof of lemma 8.4

Ffrom (4.23) and (4.21), since N(k) = O, we have
5, (411, U(0,E)) = GUOE, (i, U(0,k-1)6" (10-[0:2, 1" (k1 |k, U(0,K))
[
@O (k [16,7(0, 1) (RHLHQERHLY " (k1 ]k, 0(0,k) )L] (€.9)
I

where ¥ (cHl[k,U(0,E)) satisfies (4.21) - (4.23), using (8.2), (8.3)
follows immediately from (C.3).

Proof of Theorem 8.5 (Main Result)

Let € > 0 such that

A

Hzﬁ (et Zv | k+2v , U (0, k+2v-1)) ~ _};,o(klk,u(o,k—_l))l | £« (c.10) '

where |]+]| is the spectral norm. Since _gb(klk,u(o,k-n) 20, k=0, 1,
ceea (8.3) and {C.10) imply that we have the inequality

H_gb(k-r»j]k«r-j,u(u,kﬂ-l) - gb(k+j-1|k+j-1,u(o,k+j-2)([ Se

o1, 2, eery 2v (c.11)

Using equatfon (C.9), we have

€ 2 [110:1 17" org b1, 000, ke#3=1) - G Uk A (icki=1 [1h4-1, 00, k+4-1))*

. 0 _
& (et) + QEEHD)Y (k) |k+d=1,0(0,k+3-1)) _] Il (€.12)
II . _

£a

’

By corollary (8.3), .,é(k-i»j)_é(kﬂ-l|k+j—1,U(0,k+j-l))§' (‘k+j) + Q(k+3j) can

be uniformly bounded, sa

. . °
HEani (k+j—1|1c+j—1,.u'(o,k+j-1))g'(k+j)+g(k+j))g*' (k+j |k+j—1,U(0,k+j-1))[;‘.l ] It s
1

i

HHEa+na (k+j—1]1'c+j—_]’_,,u(0,k+j—1)§'(k+j)+g(k+j »wii-!H (€ (k1) A (et3-1 ) %+3-1,0(0, k+3-D)

. L. [}
& (k)40 (ks kebi1,U(0, kt-1)) ] H
I

. Say Ve d ﬁj(z)j §=1, 2, coey v (C.13)
8;(e) 1s co;::_inuaus tn e and 8,(c) 0 ;s €+0,3 =1, ooy v. Using
(4.21), (C.13) can also be written as follows
HettaGHs-DE (khj=1]ket§=1,0 (0, k+3-2))G" (ktj-L)+ullcti~1)C (ktj)+
gb(k+j-1|k+j—1,u(q,k+j-z ' Get3-1)]] = 5; (e)
=1, cei, 20 (c.14)

% .
Since ¥ (k+jfk+j-l,U(0,k+j-l)) is bounded for j = 1, ..., 2, therefore

(C.12) and (4.21) imply that
- i)
Il[g:znli*(m-fIl'd-i—l,U(O,Hj-l))é(k+j)§_(k+j—l[k+j—1,U(0,k+j—l))L] i< 8, ()
- 1

(C.15)

0
|l[lnlglyf(lcfj|kﬁ-—l,u(o,k+j-l))f:_(k+j)§(k+j—1|k+j-1,U(0,k+j—l))[_.:] I
- 1

s 8,(e) (C.16)

where Bi(e) s comtinuous in €, Bi(e) + 0 as ¢ - 0,1=1, 2, ... . By using
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(4.23), (C.15) and (C.16) % <=
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where f(.e) > Q when € +~ 0 and is continuous in €. By theorem g 2 e
A 1
The problem considered in this two-part paper deals with the control of linear,
discrete-time, stochastic cystems with unknown (possibly time-varying and random)
' gain parameters. The philosophy of control is based on the use of an open-loop-
IIE;E(E+I|k+1,U(O,k))[{ < 8'(e) §'(c) 0 ase >0 feedback-optimal (0.L.F.0.) control using a quadratic index of performance. In
) (C.20) Part I it is shown that the 0.L.F.0. system consists of (1) an identifier that
estimates the system state variables and gain parameters, and {2) by a controller
described by an "adaptive" gain and correction term. Several qualitative proper-
ties.of the overall system are obtained from an interpretation of the eauations.
. part 1I deals with the asymptotic properties of the 0.L.F.0. adaptive system and
How the conclusion of the theorem follows from (8.4) with simulation results dealing with the control of stable and unstable third
Tt order plants. Comparisons are carried out with the optimal system when the para-
meters are known. In addition, the simulation results are interpreted in the -
b context of the qualitative conclusions reached in Part I.

EE,(-Z& + 1,Zv) is of full rank, so we have

—

d |£h(k"{|k+1,U(0,k))[| < 8"(e) "(e) +0 ase-+0 . (c.21)
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